The Future of Jobs across Industries
Share
The future of jobs is not singular. It will diverge by industry and sector, influenced by initial starting conditions around the distribution of tasks, different investments in technology adoption, and the skills availability and adaptability of the workforce. As a consequence, different industries experience variation in the composition of emerging roles and in the nature of roles that are set to have declining demand.
Among the trends driving growth across industries over the 2018–2022 period, advances in mobile internet are likely to have a distinct impact in the Aviation, Travel & Tourism industry, the Financial Services & Investors industries, and in the Consumer industry. The rapid adoption of new technologies by consumers as well as advancements in cloud technology are set to drive growth in the Information & Communication Technologies industry, while the availability of big data is expected to have an even broader impact on the Financial Service & Investors and the Energy Utilities & Technologies industries. New energy supplies and technologies, in tandem with advances in computing power, are set to drive gains in the Energy Utilities & Technologies sector. Among non-technological drivers of business growth, increasing affluence in developing economies is poised to drive growth in the Aviation, Travel & Tourism; Global Health & Healthcare; and Chemistry, Advanced Materials & Biotechnology industries.
Table 5 demonstrates the range of demand for the adoption of specific technologies. Robotic technology is set to be adopted by 37% to 23% of the companies surveyed for this report, depending on industry. Companies across all sectors are most likely to adopt the use of stationary robots, in contrast to humanoid, aerial or underwater robots. However, leaders in the Oil & Gas industry report the same level of demand for stationary and aerial and underwater robots, while employers in the Financial Services & Investors industry are most likely to signal the planned adoption of humanoid robots in the period up to 2022. Distributed ledger technologies are set to have a particular impact in the Financial Services industry, which promises to be an early adopter of the technology. In fact, 73% of respondents expect their enterprise to adopt its use. Another industry set to scale its adoption of distributed ledger technologies will be the Global Health & Healthcare industry. Machine learning is expected to be adopted across a range of industries, including banking and insurance, where it may disrupt risk prediction; in the medical field, where it may be used for advanced diagnosis; across the energy sector, where it may lead to predictive maintenance; and in the consumer sector, where it may enhance the industry’s ability to model demand.
Table 5: Technology adoption by industry and share of companies surveyed, 2018–2022 (%)
Source: Future of Jobs Survey 2018, World Economic Forum.
Table 6: Projected (2022) effects on the workforce by industry and proportion of companies (%)
Source: Future of Jobs Survey 2018, World Economic Forum.
While technologies have the capacity to automate and potentially augment a variety of tasks across enterprises, this will vary by industry-specific capital investment, the risks associated with automating sensitive tasks, the unknown knock-on-effects of how machines and algorithms will perform the task, the presence of a longer-term workforce strategy, and the managerial challenges of re-orienting the operations of different enterprises. Additionally, many sectors face disruption and shifts in demand through non-technological factors, such as the effect of ageing in the Global Health & Healthcare industry. Efficiencies in healthcare technologies will thus become necessary innovations to meet the demographic changes afoot, freeing time spent in administration and record keeping for caregiving activities.36
The growth potential of new technological expansion is buffered by multi-dimensional skills gaps across local and global labour markets, and among the leadership of enterprises. Skills gaps among the local labour market are among the most cited barriers to appropriate technology adoption for a number of industries, but they are particularly strong concerns for business leaders in the Aviation Travel & Tourism, Information & Communication Technologies, Financial Services & Investors, and Mining & Metals industries. Companies in Global Health & Healthcare as well as Infrastructure industries are most likely to cite leadership skills gaps as significant barriers, while the Chemistry, Advanced Materials & Biotechnology and Information & Communication Technologies sectors report broad global labour market skills shortages.
There is a distinctive footprint of tasks performed across each industry. For example, on average, workers in the Mining & Metals industry spend the majority of their time in physical and manual tasks, while those in the Professional Services industry spend the majority of their time on tasks related to communicating and interacting. In the Oil & Gas, Infrastructure, and Chemistry, Advanced Materials & Biotechnology industries, the tasks that occupy today’s workers for the largest proportion of their time focus on the performance of complex and technical activities. Administrative activities are particularly prominent in the Infrastructure industry as well in the Mining & Metals and Financial Services & Investors industries.
As industries make investments in new technologies, the impact on each industry as a whole is determined by the task composition of each sector and the desirability of automating or augmenting specific tasks. Existing research has highlighted that some industries remain labour-intensive in the production of goods and services, leading to low productivity growth.37 If managed well, the augmentation of a range of tasks today can create the opportunity for new, higher productivity growth. For example, administering and physical tasks are often low value and low productivity tasks. In the current projections of companies surveyed for this report, administrative tasks in the Financial Services & Investors sector are set to be significantly replaced by machine labour. While today machines and algorithms perform 36% of the collective hours spent on this task, by 2022 this share will rise to 61%, with knock-on effects on the demand for Data Entry Clerks, Secretarial staff and Accounting staff. In the Energy and Consumer sectors, physical and manual work activities will also be replaced. Today, respectively 38% and 30% of such tasks in these two sectors are performed by machines and algorithms. By 2022, those rates are expected to be 56% and 50% respectively, with knock-on effects on demand for Assembly and Factory Workers, Cashiers, and Stock-Keeping Clerks. Distinctively, the Aviation Travel & Tourism and Information & Communication Technologies sectors are those most likely to venture into automating some complex and technical activities. For example, today 25% of labour in the Information & Communications Technology industry is performed by machines and algorithms, while 46% is projected for 2022.
All industries expect sizable skills gaps, stating that at least 50% of their workforce will require reskilling of some duration. According to respondents to the Future of Jobs Survey, more than 55% of workers across the Aviation, Travel & Tourism; Financial Services & Investors; Chemistry, Advanced Materials & Biotechnology; and Global Health & Healthcare sectors will need some reskilling. The Aviation, Travel & Tourism industry outlines the largest demand for reskilling, projecting that 68% of its workforce will require some reskilling. Further, companies in that industry project that 18% of the workforce will require reskilling lasting more than one year.
While most industry respondents expect to observe declining demand for a set of, often labour-intensive roles dominated by manual and routinized work, that decline is often counter-balanced by growth across other specializations. A critical concern that will affect all industries will be the imperative to reskill workers currently in roles that have declining prospects into ones with expanding prospects.
Many of the companies surveyed for this report project that, by 2022, they will both expand and contract parts of their current workforce, with expansion likely to offset the contraction. However, this balance looks different across different industry sectors. Mining & Metals industry respondents, alongside those from the Consumer and Information & Communication Technologies industries, expect to see a reduction in their workforce due to automation, while Professional Services industry respondents expect that the changes afoot are more likely to lead to an expansion of their workforce.
Projected adaptations specific to the skilling needs associated with these changes include the potential to buy, build, borrow or automate talent. In particular, many of the Future of Jobs Survey respondents highlighted that they are likely to hire new permanent staff with skills that are relevant to the adopted technologies. The broad mobility sector is most likely to look to automation as a way to solve its projected talent challenges, and is least likely to look to reskill current employees. In contrast, companies in the Global Health & Healthcare industry—in addition to the Chemistry, Advanced Materials & Biotechnology industry—are most likely to look to retrain existing workers.
The trusted partners with the potential to support industries in their transformation vary across three key groups: specialized departments within the companies in question, professional services firms and industry associations. A series of other potential stakeholders—education institutions, government programmes and labour unions—received less emphasis as possible partners in these transitions. The Oil & Gas, Mining & Metals, and Energy Utilities & Technology industries are more likely to look to industry associations to support their workforce transition. Companies in the Global Health & Healthcare sector name professional services firms as their primary support mechanism, but also name academic experts as their third-most important support pillar. Finally, Aviation, Travel & Tourism firms are most likely to name local education institutions as their third-most important support structure. Part 2 of this report contains distinct Industry Profiles that offer a deeper look at technology, jobs, tasks and skills trends within different sectors.